ICMC 2007 - Proceedings of the International Computer Music
Conference, "Immersed Music". Vol. Il, pp. 99 - 102.

REAL-TIME, LOW LATENCY AUDIO PROCESSING IN JAVA

Nicolas Juillerat, Stefan Miiller Arisona, Simon Schubiger-Banz
ETH Zurich
Computer Systems Institute

ABSTRACT

This paper discusses the implementation of real-time and
low latency audio processing in Java. Despite the fact
that Java SE is widespread and has a large programmer
base, it is clearly neither targeted at real-time, nor at low-
latency applications. As such, doing good audio process-
ing with this language is a challenging task and various
issues have to be taken into account: these include limi-
tations or properties of the audio drivers, the kernel and
operating system, the audio API, the Java virtual machine
and the garbage collector. We present a concrete Java au-
dio processing framework called Decklight 4 that takes
up the challenge. We show that, despite of many con-
straints, it is possible to get latencies as low as a few mil-
liseconds on a standard personal computer using Java. We
present the various elements of our implementation that
allow such a result to be achieved, and we validate them
through experimental measurements.

1. INTRODUCTION

The quality of a real-time audio processing tool is tightly
related to its latency. Real-time voice transformations for
instance should provide a sufficiently low latency so that
the speaker or singer is not disturbed by the delay. While
delays of less than 20 milliseconds are nearly unnoticeable
with voice and most melodic instruments, delays as low as
4 milliseconds can be noticed with drum-like sounds [3].

Because of these strong requirements, real-time audio
processing tools have been mostly implemented in C or
C++. We pretend that a Java implementation achieving a
few milliseconds of latency is possible, despite of various
limitations that are commonly stated: the absence of real-
time guarantees, or simply the slower speed compared to
C. In this paper, we present the key issues that such an
implementation has to deal with.

We choose the Java language because of its con-
vienence, wider developer base and portability.

Unlike previous research on this topic with Java, we do
not want to present the architecture, design and usage of
such a tool, but rather the various aspects that affect the
latency and how to cope with them in the implementation.

The rest of this paper is structured as follows: in sec-
tion 2, we present all the aspects of a Java real-time audio
processing tool that can affect the latency and we propose
ways of minimizing it. Then we present a concrete im-
plementation based on our theories in section 3 and give

Record delay Sync. delay
- > > Processing time
Latency

‘ Record buffer 1 ‘Process buffer 1 ‘ Play buffer 1 ‘

‘ Record buffer 2 ‘Process buffer 2‘ Play buffer 2 ‘

‘ Record buffer 3 ‘Process buffer 3‘ Play buffer 3

-

Time

Figure 1. Audio processing pipeline

practical results. We compare our work to related research
in section 4 and suggest future work in section 5.

2. JAVA AUDIO PROCESSING

In this section, we discuss the elements of a digital audio
processing tool, with focus on issues specific to the use of
the Java programming language and latency. We start with
the hardware and driver access in sections 2.1 and 2.2. We
continue with the operating system and virtual machine
issues in sections 2.3 and 2.4. Finally, we discuss issues
related to the processing tool itself.

2.1. The Audio Pipeline

Ideally, an audio signal processor could record a sample,
process it, and play the result, providing nearly zero la-
tency. With the exception of some professional devices,
this is unfortunately not achievable in practice. Record
and playback are performed by sound cards on blocks of
samples, or buffers. While the size of a buffer can usually
be configured, the sole decomposition of the signal into
buffers introduces a minimal latency to the system.

Figure 1 shows the typical pipeline of a real-time pro-
cessing application. This is an ideal pipeline, in which we
assume that the application has direct control over the un-
derlying audio hardware. By using buffers, at least two
delays are introduced that both contribute to the total la-
tency of the system:

e The record delay. Samples cannot be processed un-
til at least one buffer has been filled.

e The synchronization delay. The processing, even
if it is very fast, takes some time. As a result, the
playback usually cannot start until the next record
buffer is ready.

juillern
Text Box
ICMC 2007 - Proceedings of the International Computer Music Conference, "Immersed Music". Vol. II, pp. 99 - 102.

Thus, the latency is given by at least twice the buffer
size. Depending on the audio driver and API, additional
delays can take place. These can be due to any internal
mixing, resampling or processing that takes place before
the samples are sent to the sound card.

The allowed sizes for the buffers greatly vary from one
operating system to another, and from one sound card to
another. On Linux architectures, we could set it as small
as 16 samples with most sound cards when working with
the Advanced Linux Sound Architecture (ALSA) [8]. On
other platforms, it was sometimes not possible to go below
512 samples though (e.g., Windows XP with DirectSound
and an old soundcard).

Finally, some additional delays can be introduced by
the internal wirings of the sound card itself. These delays
are expected to be relatively small.

2.2. Choosing the Audio API

We have depicted the ideal pipeline of an audio processing
tool in the last section. To get as close to it as possible in
practice, it is important to have a low-level audio API that
is close to the hardware, and allows us to control the exact
buffer sizes.

Preliminary tests with JavaSound [10], the standard
sound API of the Java platform, revealed that it internally
uses various intermediate mixing buffers. Because the ap-
plication has nearly no control over them, achieving low
latencies was not possible. The best we could achieve was
as long as about 150 milliseconds, and the results greatly
varied from one architecture to another.

A better solution is to use the ALSA API directly.
ALSA API calls can be wrapped using the Java Native
Interface (JNI) with a few lines of C code. This approach
would limit us to the Linux platform only. Thus our im-
plementation uses RtAudio [6], which redirects the calls
nearly directly to ALSA, but also allows us to use Direct-
Sound on Windows or CoreAudio on MacOS.

Another problem is to get a precise clock for timing.
Our tests showed that none of the clocks provided by Java
or by the Linux kernel was accurate enough for audio pro-
cessing. We ended up using the number of captured audio
samples as a clock, which gave the best results in practice.

2.3. Dealing with the HotSpot Compiler

When Java code is executed, it is not immediately com-
piled. Instead, when a loop is encountered for the first
time, a few iterations are executed in interpreted mode,
and then only, the code is compiled. This is the HotSpot
feature of the Java Virtual Machine (JVM), which has
been introduced since the release 1.4.

While the speed of compiled Java code is fast enough
for real-time computations [4], the first few iterations that
are executed in interpreted mode can be too slow. As a
result, the computation time can take much more than the
duration of one audio buffer in the first iteration. In other
words, the synchronization delay discussed in section 2.1
may span many buffers. With most audio drivers, play

buffers are queued, and the delay will never be reduced in
the next iterations. As a result, the latency will stall with
a large duration forever.

Because the processing time of the first iteration is so
important for the latency, we have to play some tricks in
order to get acceptable results with the HotSpot JVM. The
simplest one is to run the whole processing in a “discon-
nected” way for a few iterations, that is, without actually
recording or playing samples. Actual recording and play-
back are only started after a small period, when all the Java
code has been compiled and is thus running at an optimal
speed. The amount of time that is required for the JVM
to compile everything varies from one version to another,
and also depends on the amount of code to execute. We
got delays ranging from 0.1 to 2 seconds in practice.

Another way of avoiding the latency induced by the
first iterations is to force the synchronization delay dis-
cussed in section 2.1 to one buffer. This is possible with
ALSA for instance, by setting the number of buffers to
two. Samples are just dropped from the output if an iter-
ation takes to much time, but the latency is not affected
in the next iterations. Because samples are expected to be
heavily dropped in the first few iterations anyway, we only
use this feature in addition to the previous trick. Using
this feature also ensures that an occasional long comput-
ing time does not affect the latency but just drops samples.

Remaining variations between the processing duration
of consecutive iterations are unavoidable. But they can be
drastically reduced by using threads with real-time priori-
ties whenever supported by the operating system. Switch-
ing a Java thread to real-time was implemented by invok-
ing the corresponding OS routines through a JNI wrapper.
Using real-time priority allowed us to use audio buffers
of 16 samples without being affected by intensive concur-
rent processing. Without it, at least 64 samples were nec-
essary to get good results with no other threads running,
and much larger buffers with other CPU-intensive threads
running concurrently.

2.4. Garbage Collection and Priority Inversion

A problem that is related to the HotSpot compilation is
jitter: it does not suffice that the processing time takes
less than the duration of a buffer on average: if a single
iteration takes more than one buffer, the playback stream
will either be delayed or samples will be dropped.

A component of the Java virtual machine that can intro-
duce large jitter at any time is the garbage collector. More
precisely, the following features of the garbage collector
may prevent the creation of a real-time application:

e In order to do its job, the garbage collector can oc-
casionally block all threads of the Java application
that are trying to allocate new objects, regardless of
their priorities.

e The amount of time during which the threads are
blocked is not guaranteed.

In other words, the garbage collector can introduce any
amount of jitter, and makes Java inherently unsuitable for
real-time applications. In practice though, we found that
the duration of garbage collections with the latest Sun
JVM was never above one millisecond. As a general rule
of thumb, it is always good to avoid garbage in the first
place but our experience showed that even regular mem-
ory allocations (few objects per cycle) during processing
will not affect the overall performance. The IBM JVM [9]
on the other hand typically took about 8 milliseconds per
garbage collection with our application.

There is an additional point that is worth noting: we
suggested in the previous section to use real-time prior-
ity threads. Unfortunately, the garbage collector runs in
a separate thread over which we have no control. This
thread does not run in real-time, but as a low priority
thread because garbage collection is supposed to be a
background task. Thus, when the garbage collector has
to block the other running threads, the entire application
is blocked, waiting on a low-priority thread that can be
preempted at any time by other running applications. This
phenomenon is known as priority inversion and can seri-
ously affect the jitter. Fortunately, this problem is com-
pletely resolved by operating systems that implement pri-
ority inheritance: on such an operating system, if a low
priority thread blocks a higher priority thread, the prior-
ity of the low priority thread is temporarily raised to that
of the blocked thread. The latest Linux kernels imple-
ments priority inheritance, making jitter problems related
to garbage collection nearly unnoticeable.

2.5. Inherent Audio Processing Latencies

Finally, there are some audio effects that have some inher-
ent latency that adds up to the total latency of the system.
Examples are all effects working in the frequency domain:
it is necessary to work with buffers whose sizes must be
large enough to capture the lowest frequencies we want
to process. A pitch shifter for instance typically requires
buffers of at least 10 milliseconds to perform acceptable
results, and even more to perform good results. We refer
to the buffers discussed in section 2.1 as the audio buffers,
and to the buffers required for a particular audio effect as
the effect buffers.

Setting the audio buffers size to the size of the effect
buffers is a possible, but not optimal solution: both the
record delay and the synchronization delay discussed in
section 2.1 are proportional to this size. A better solution
is to use a fraction of the effect buffer size for the au-
dio buffer size: multiple captured audio buffers are joined
together to form a single effect buffer, and each effect
buffer is then split back into multiple audio buffers after
the transformation to feed the audio playback device.

The advantage of this scheme is that the effect buffer
size only affects the record delay. The synchronization
delay still depends on the audio buffer size, which is a
fraction of the effect buffer size only. There is a small is-
sue though: the processing of an effect buffer must be fast
enough to fit within the duration of an audio buffer. We

have to ensure that the first part of the result, correspond-
ing to an audio buffer, can be played in time. This can be
a problem with CPU intensive effects if the audio buffer
size is much smaller than the effect buffer size.

3. CURRENT STATE

In this section, we discuss the current state of our frame-
work and give preliminary results on practical tests.

3.1. Decklight 4

Decklight 4 is our audio processing framework written in
Java on Linux. It implements all the ideas presented in
this paper. It uses RtAudio for audio I/O and sets real-
time priority threads for the audio processing. Various
audio effects are implemented. They range from simple
time-domain effects such as filters and echoes, to com-
plex Fourier-domain effects such as pitch shifting. The
only part that is written in C is the access to RtAudio and
to the Linux threading API. In both cases the C code is a
straightforward mapping between the actual API and Java
methods and is thus portable to all platforms where RtAu-
dio is available (notably Windows and Mac OS X). The
rest of the application, including all audio effects and the
fast Fourier transform are written entirely in Java.

The actual architecture of the framework is based on
our previous projects Decklight 2 and 3 [2] and is thus
not described here again. The only notable difference in
Decklight 4 is the introduction of the Java language, and
the focus on audio processing only.

3.2. Results

In order to validate our theory, we implemented two audio
effects on top of Decklight 4, and we compared the the-
oretical latencies against experimental measurements. To
make the measurements, we sent the left output of a mono
audio signal through our application, and we mixed the
result with the right channel that was directly wired. The
result was recorded in an audio editor on another machine,
and the latency was computed using the delay between the
left and right channels.

The first audio effect was a ten-band equalizer using a
cascade of Butterworth band-pass filters. The latency in-
herent to this effect itself is negligible. The audio buffers
were set to a size of 16 samples. The second effect was
a pitch shifter working in the frequency domain. It uses
overlapped windows of 512 samples at a sample rate of
48000Hz. Its inherent latency is thus about 10.67 mil-
liseconds. The audio buffer size was set to 32 samples.

The application was running with the Sun JVM version
6 on a Linux machine. The sound hardware was a Real-
tek SoundBlaster card. The audio driver was accessed by
RtAudio through JNI.

Table 1 shows the theoretical and measured latencies
with these two effects. This table reveals that there is only
a small difference between the theoretical and measured
latencies. These differences correspond to the duration

Effect Audio Theoretical | Measured
buffer latency latency

Equalizer 0.33ms | 0.67 ms 1.5 ms

Pitch shifter | 0.67 ms | 11.33 ms 12.49 ms

Table 1. Theoretical and experimental latencies

of one audio buffer plus about 0.5 millisecond. This can
be due to various causes, such as internal mixing buffers
used by the driver, or internal post-processings performed
by the soundcard. More precise specifications would be
required to get an accurate answer.

4. RELATED WORK

There are many other frameworks for low-latency audio
processing written in C or C++. But very few researchers
have investigated the Java language. A notable exception
is JASS [7]. Its implementation has similarities with ours,
especially regarding the audio hardware access, but it does
not use real-time threads. It also does not directly allow
the audio buffer size from being smaller than the effect
buffer size, for effects requiring buffers. As a result, our
framework typically performs better on similar architec-
tures. The authors also do not give any information on
what aspects are affecting the latency and how to cope
with them, apart from the buffer sizes.

More recently, Java bindings to the Linux “Jack” au-
dio system have been implemented [1], yielding low mea-
sured latencies as well. The authors focus on the archi-
tecture and not on low latency aspects though. On the
other hand, our JVM and garbage collector related find-
ings are applicable to other media types as well (see [5]
for an overview of our Soundium/Decklight multimedia
platform).

It is also worth noting that the latest version of Java-
Sound [10], as well as the third-party implementation Tri-
tonus [12], have removed most of the intermediate buffers
between the application and the underlying API, such as
ALSA. But our tests revealed that the resulting latency is
still above 20 milliseconds.

5. FUTURE WORK

The main obstacle to real-time processing in Java is the
garbage collector. Although the version of the Sun JVM
actually performed well in practice, it is not guaranteed to
always perform well. The version of the IBM JVM for in-
stance adds about 20 times more jitter but is still fully Java
compliant. A new real-time Java implementation (JSR-
001), including a real-time garbage collector, has just been
released by Sun. We plan to port our framework to it.

Other future working directions are towards the reduc-
tion of the latency inherent to some audio effects, which is
a problem that highly depends on the nature of the effects
themselves.

We plan to process MIDI events in real-time as well in
addition to raw audio streams. We are also working on a
full-featured, GUI application using our framework.

6. CONCLUSION

We have investigated the problem of implementing a real-
time, low latency audio processing tool with the Java lan-
guage. We saw that many aspects are affecting the over-
all latency of the system, some of which are specific to
Java. We proposed various ways of coping with them
and we implemented our ideas into a concrete framework.
While we could achieve excellent results (within a few
milliseconds) on a standard personal computer, we also
discovered two potential limitations: the first one is that
the results can vary significantly with different hardware,
driver, operating system or Java virtual machine. The sec-
ond one is that although we could achieve very low laten-
cies, these results are not guaranteed. We expect that the
development of real-time Java implementations with real-
time garbage collectors will give more predictability and
guaranteed results in the near future.

7. REFERENCES

[1] Jens Gulden, “JJack - Using the JACK Audio Connection
Kit with Java”, Linux Audio Conference, Berlin, Germany,
2007.

[2] S. Miiller Arisona, S. Schubiger-Banz, M. Specht, “A
Real-Time Multimedia Composition Layer”, Proceedings
of AMCMM, ACM Multimedia, Santa Barbara, 2006.

[3] N. Lago, “The Quest for Low Latency” Proc. of the In-
ternational Computer Music Conference, Miami, Florida,
2004.

[4] J.P. Lewis and U. Neumann, “Performance of Java ver-
sus C++”, Computer Graphics and Immersive Technology
Lab, University of Southern California, 2004.

[5] S. Schubiger-Banz, S. Miiller Arisona, “Soundium2: An
Interactive Multimedia Playground”, Proc. of the Interna-
tional Computer Music Conference, San Francisco, 2003.

[6] Gary P. Scavone, “RtAudio: A Cross-Platform C++ Class
for Realtime Audio Input/Output”, Proc. of the Interna-
tional Computer Music Conference, Goteborg, Sweden,
2002.

[7] Kees van den Doel, Dinesh K. Pai, “JASS: A Java Audio
Synthesis System For Programmers”, Proc. of the Inter-
national Conference on Auditory Display, Espoo, Finland,
2001.

[8] “Advanced Linux Sound Architecture”,
http://alsa-project.org

[9] “IBM Java Standard Edition”,
http://www.ibm.com/java

[10] “JavaSound API Programmer’s Guide”,
http://java.sun.com/j2se/1.5.0/docs/guide/sound

[11] “Java SE Real-Time”,
http://java.sun.com/javase/technologies/realtime.jsp

[12] “Tritonus: Open Source Java Sound”,
http://tritonus.org

